
CrossTalk—November/December 2011 31

PUBLISHER’S CHOICE

Deployment Optimization
for Embedded Flight
Avionics Systems

Software Defense Application
The deployment topology of a distributed system determines

how software is mapped to hardware. Optimizing the deploy-
ment topology of DoD distributed embedded systems has a
significant impact on how efficiently the software utilizes the
hardware. Deployment optimization can also help minimize costs
by increasing hardware efficiency without requiring changes to
the software or hardware architecture. This increase in hard-
ware efficiency, in turn, helps reduce fuel consumption, increase
operational ranges, and decrease cost.

Introduction
Current Trends and Challenges

Several trends are shaping the development of embedded
flight avionics systems. First, there is a migration away from
older federated computing architectures where each subsys-
tem occupied a physically separate hardware component to
integrated computing architectures where multiple software
applications implementing different capabilities share a common
set of computing platforms. Second, publish/subscribe based
messaging systems are increasingly replacing the use of hard-
coded cyclic executives.

These trends are yielding a number of benefits. For example,
integrated computing architectures create an opportunity for
system-wide optimization of deployment topologies, which map
software components and their associated tasks to hardware
processors as shown in Figure 1.1

Optimized deployment topologies can pack more software
components onto the hardware, thereby optimizing system pro-
cessor, memory, and I/O utilization [1, 2, 3]. Increasing hardware
utilization can decrease the total hardware processors that are
needed, lowering both implementation costs and maintenance
complexity. Moreover, reducing the required hardware infrastruc-
ture has other positive side effects, such as reducing weight and
power consumption.

Brian Dougherty, Vanderbilt University
Douglas C. Schmidt, Vanderbilt University
Jules White, Virginia Tech
Russell Kegley, Lockheed Martin Aeronautics
Jonathan Preston, Lockheed Martin Aeronautics

Abstract. Loosely coupled publish/subscribe messaging systems facili-
tate optimized deployment of software applications to hardware proces-
sors. Intelligent algorithms can be used to refine system deployments to
reduce system cost and resource requirements, such as memory and
processor utilization. This article describes how we applied a computer
assisted deployment optimization tool to reduce the required processors
and network bandwidth consumption of a legacy flight avionics system.

Open Problems
Developing computer-assisted methods and tools to deploy

software to hardware in embedded systems is hard [4, 5] due to
the number and complexity of constraints that must be addressed.

For example, developers must ensure that each software
component is provided with sufficient processing time to meet
any real-time scheduling constraints [6]. Likewise, resource
constraints (such as total available memory on each processor)
must also be respected when mapping software components
to hardware components [6, 7]. Moreover, assigning real-time
tasks in multi-processor and/or single-processor machines is
NP-Hard [8], which means that such a large number of potential
deployments exist that it would take years to investigate all pos-
sible solutions.

Current algorithmic deployment techniques are largely
based on heuristic bin-packing [8, 9, 10], which represents the
software tasks as items that take up a set amount of space
and hardware processors as bins that provide limited space.
Bin-packing algorithms try to place all the items into as few bins
as possible without exceeding the space provided by the bin in
which they are placed. These algorithms use a heuristic, such as
sorting the items based on size and placing them in the first bin
they fit in, to reduce the number of solutions that are considered
and to avoid exhaustive solution space exploration.

Conventional bin-packing deployment techniques take a one-
dimensional view of deployment problems by just focusing on a
single deployment concern at a time. Example concerns include
resource constraints, scheduling constraints, or fault-tolerance
constraints. In production flight avionics systems, however, deploy-
ments must meet combinations of these concerns simultaneously.

Solution Approach: Computer Assisted Deployment
Optimization

This paper describes and validates a method and tool called
ScatterD that we developed to perform computer-assisted deploy-
ment optimization for flight avionics systems. The ScatterD model-
driven engineering [11] deployment tool implements the Scatter
Deployment Algorithm, which combines heuristic bin-packing with
optimization algorithms, such as genetic algorithms [12] or particle
swarm optimization techniques [13] that use evolutionary or bird-
flocking behavior to perform blackbox optimization. This article

Figure 1. Flight Avionics Deployment Topology
(© 2010 by Vanderbilt and Lockheed Martin)

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Deployment Optimization for Embedded Flight Avionics Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Vanderbilt University,Institute for Software Integrated Systems,2015
Terrace Place,Nashville,TN,37203

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Loosely coupled publish/subscribe messaging systems facilitate optimized deployment of software
applications to hardware processors. Intelligent algorithms can be used to refine system deployments to
reduce system cost and resource requirements, such as memory and processor utilization. This article
describes how we applied a computer assisted deployment optimization tool to reduce the required
processors and network bandwidth consumption of a legacy flight avionics system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

32 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

shows how flight avionics system developers have used ScatterD
to automate the reduction of processors and network bandwidth
in complex embedded system deployments.

The remainder of this article is organized as follows: Section 4
outlines a flight avionics deployment case study we use to moti-
vate the challenges and solutions throughout the paper; Section
5 describes the challenges faced by developers when attempt-
ing to optimize a representative flight avionics deployment
topology; Section 6 discusses the ScatterD tool for deployment
optimization; Section 7 provides empirical results demonstrat-
ing the reductions in hardware footprint and network bandwidth
consumption that ScatterD can produce; and Section 8 presents
concluding remarks.

Section 4:
Modern Embedded Flight Avionics Systems:
A Case Study

Over the past 20 years, flight avionics systems have become
increasingly sophisticated. Modern aircraft now depend heav-
ily on software executing atop a complex embedded network
for higher-level capabilities, such as more sophisticated flight
control and advanced mission computing functions. To accom-
modate the increased amount of software required, avionics sys-
tems have moved from older federated computing architectures
to integrated computing architectures that combine multiple
software applications together on a single computing platform
containing many software components.

The class of flight avionics system targeted by our work is a
networked parallel message-passing architecture containing
many computing nodes. At the individual node level, ARINC
653-compliant time and space partitioning separates the soft-
ware applications into sets with compatible safety and security
requirements. Inside a given time partition, the applications run
within a hard real-time deadline scheduler that executes the ap-
plications at a variety of harmonic periods.

The integrated computing architecture shown in Figure 2 has
benefits and challenges. Key benefits include better optimiza-
tion of hardware resources and increased flexibility, which result
in a smaller hardware footprint, lower energy use, decreased
weight, and enhanced ability to add new software to the aircraft
without updating the hardware. The key challenge, however, is
increased system integration complexity. In particular, while the
homogeneity of processors gives system designers a great deal
of freedom allocating software applications to computing nodes,
optimizing this allocation involves simultaneously balancing
multiple competing resource demands.

For example, even if the processor demands of a pair of
applications would allow them to share a platform, their respec-
tive I/O loads may be such that worst-case arrival rates would
saturate the network bandwidth flowing into a single node. This
problem is complicated for single-core processors used in current
integrated computing architectures. Moreover, this problem is
being exacerbated with the adoption and fielding of multi-core
processors, where competition for shared resources expands
to include internal buses, cache memory contents, and memory

access bandwidth. Artifacts complete with data describing the
computational interactions and requirements of this system were
provided by the Systems and Software Producibility Collabora-
tion and Experimentation Environment (SPRUCE) web portal
<http://www.sprucecommunity.org>. The SPRUCE web portal
allows industry partners to create challenge problems complete
with artifacts comprised of real data. These problems can then be
paired with members of the research community that maximize
the potential of discovering new, innovative solutions.

Section 5:
Deployment Optimization Challenges

This section describes the challenges facing developers when
attempting to create a deployment topology for a flight avion-
ics system. The discussion below assumes a networked parallel
message-passing architecture (such as the one described in
Section 4).

The goal is to minimize the number of processors and the
total network bandwidth resulting from communication between
software tasks.

5.1 Challenge 1: Satisfying Ratemonotonic Scheduling
Constraints Efficiently

In real-time systems, such as the embedded flight avionics
case study from Section 4, either fixed priority scheduling algo-
rithms, such as ratemonotonic scheduling, or dynamic priority
scheduling algorithms, such as earliest deadline-first, control
the execution ordering of individual tasks on the processors.
The deployment topology must ensure that the set of software
components allocated to each processor can be scheduled and
will not miss real-time deadlines. Finding a deployment topology
for a series of software components that ensures the ability to
schedule all tasks is called “multiprocessor scheduling” and is
NP-Hard [8].

A variety of algorithms, such as bin-packing algorithm varia-
tions, have been created to solve the multiprocessor scheduling
problem. A key limitation of applying these algorithms to optimize
deployments is that bin-packing does not allow developers to
specify which deployment characteristics to optimize. For example,
bin-packing does not allow developers to specify an objective
function based on the overall network bandwidth consumed by a
deployment. We describe how ScatterD ensures scheduling con-
straints are met in Section 6.1 and allows for complex objective
functions, such as network bandwidth reduction.

5.2 Challenge 2: Reducing the Complexity of Memory,
Cost, and Other Resource Constraints

Processor execution time is not the only type of resource that
must be managed while searching for a deployment topology.
Hardware nodes often have other limited but critical resources,
such as main memory or core cache, necessary for the set of
software components it supports to function. Developers must
ensure that the components deployed to a processor do not
consume more resources than are present.

If each processor does not provide a sufficient amount of

http://www.sprucecommunity.org

PUBLISHER’S CHOICE

CrossTalk—November/December 2011 33

resources to support all tasks on the processor, a task will not
execute properly, resulting in a failure. Moreover, since each
processor used by a deployment has a financial cost associ-
ated with it, developers may need to adhere to a global budget,
as well as scheduling constraints. We describe how ScatterD
ensures that resource constraints are satisfied in Section 6.2.

5.3 Challenge 3: Satisfying Complex Dynamic Network
Resource and Topology Constraints

Embedded flight avionics systems must often ensure that
not only processor resource limitations are adhered to, but also
network resources (such as bandwidth) are not over consumed.
The consumption of network resources is determined by the
number of interconnected components that are not collocated
on the same processor. For example, if two components are
collocated on the same processor, they do not consume any
network bandwidth.

Adding the consideration of network resources to deploy-
ment substantially increases the complexity of finding a
software-to-hardware deployment topology mapping that meets
requirements. The impact of the component’s deployment on
the network, however, cannot be calculated in isolation of the
other components. The impact is determined by finding all other
components that it communicates with, determining if they are
collocated, and then calculating the bandwidth consumed by the
interactions with those that are not collocated. We describe how
ScatterD helps minimize the bandwidth required by a system
deployment in Section 6.3.

Section 6:
ScatterD: A Deployment Optimization Tool to Minimize
Bandwidth and Processor Resources

Heuristic bin-packing algorithms work well for multiproces-
sor scheduling and resource allocation. As discussed in Section
5, however, heuristic bin-packing is not effective for optimizing
designs for certain system-wide properties, such as network
bandwidth consumption, and hardware/software cost. Meta-
heuristic algorithms [12, 13] are a promising approach to opti-
mize system-wide properties that are not easily optimized with
conventional bin-packing algorithms. These types of algorithms
evolve a set of potential designs over a series of iterations using
techniques, such as simulated evolution or bird flocking. At the
end of the iterations, the best solution(s) that evolved out from
the group is output as the result.

Although metaheuristic algorithms are powerful, they have
historically been hard to apply to large-scale production embed-
ded systems since they typically perform poorly on problems
that are highly constrained and have few correct solutions.
Applying simulated evolution and bird-flocking behaviors for
these types of problems tends to randomly mutate designs in
ways that violate constraints. For example, using an evolutionary
process to splice together two deployment topologies is likely to
yield a new topology that is not real-time schedulable.

Below we explain how ScatterD integrates the ability of
heuristic bin-packing algorithms to generate correct solutions to
scheduling and resource constraints with the ability of meta-
heuristic algorithms to flexibly minimize network bandwidth and
processor utilization and address the challenges in Section 5.

Figure 2. An Integrated
Computing Architecture for
Embedded Flight Avionics

34 CrossTalk—November/December 2011

PUBLISHER’S CHOICE

6.1 Satisfying Real-time Scheduling Constraints
with ScatterD

ScatterD ensures that the numerous deployment constraints
(such as the real-time scheduling constraints described in
Challenge 1 from Section 5.1) are satisfied by using heuristic
bin-packing to allocate software tasks to processors. Conven-
tional bin-packing algorithms for multiprocessor scheduling
are designed to take as input a series of items (e.g., tasks or
software components), the set of resources consumed by each
item (e.g., processor and memory), and the set of bins (e.g., pro-
cessors) and their capacities. The algorithm outputs an assign-
ment of items to bins (e.g., a mapping of software components
to processors).

ScatterD ensures that all tasks of the flight avionics system
discussed in Section 4 can be scheduled by using response-
time analysis. The response time resulting from allocating a
software task of the avionics system to a processor is analyzed
to determine if a software component can be scheduled on a
given processor before allocating its associated item to a bin. If
the response time is fast enough to meet the real-time dead-
lines of the software task, the software task can be allocated to
the processor.

6.2 Satisfying Resource Constraints with ScatterD
To ensure that other resource constraints (such as memory

requirements described in Challenge 2 from Section 5.2) of each
software task are met, we specify a capacity for each bin that is
defined by the amount of each computational resource provided
by the corresponding processor in the avionics hardware platform.
Similarly, the resource demands of each avionics software task
define the resource consumption of each item. Before an item
can be placed in a bin, ScatterD verifies that the total consump-
tion of each resource utilized by the corresponding avionics
software component and software components already placed on
the processor does not exceed the resources provided.

6.3 Minimizing Network Bandwidth and Processor
Utilization with ScatterD

To address deployment optimization issues (such as those
raised in Challenge 3 from Section 5.3), ScatterD uses
heuristic bin-packing to ensure that all tasks can be
scheduled and resource constraints are met. If the heuristics
are not altered, bin-packing will always yield the same
solution for a given set of software tasks and processors.
The number of processors utilized and the network bandwidth
requirements will therefore not change from one execution
of the bin-packing algorithm to another. In a vast deployment
solution space associated with a large-scale flight avionics
system, however, there may be many other deployments
that substantially reduce the number of processors and net-
work bandwidth required, while also satisfying all
design constraints.

To search for avionics deployment topologies with minimal
processor and bandwidth requirements—while still ensuring
that other design constraints are met—ScatterD uses
metaheuristic algorithms to seed the bin-packing algorithm.
In particular, metaheuristic algorithms are used to search the
deployment space and select a subset of the avionics software
tasks that must be packed prior to the rest of the software
tasks. By forcing an altered bin-packing order, new deployments
with different bandwidth and processor requirements are
generated. Since bin-packing is still the driving force behind
allocating software tasks, design constraints have a higher
probability of being satisfied. By using metaheuristic algorithms
to search the design space—and then using bin-packing to
allocate software tasks to processors—ScatterD can generate
deployments that meet all design constraints while also
minimizing network bandwidth consumption and reducing
the number of required processors in the avionics platform,
as shown in Figure 3.

Figure 3. ScatterD Deployment Optimization Process

CrossTalk—November/December 2011 35

PUBLISHER’S CHOICE

Section 7:
Empirical Results

This section presents the results of configuring the ScatterD
tool to combine two metaheuristic algorithms (particle swarm
optimization and a genetic algorithm) with bin-packing to opti-
mize the deployment of the embedded flight avionics system de-
scribed in Section 4. We applied these techniques to determine
if (1) a deployment exists that increases processor utilization to
the extent that legacy processors could be removed; and (2) the
overall network bandwidth requirements of the deployment were
reduced due to collocating communicating software tasks on a
common processor.

The first experiment examined applying ScatterD to minimize
the number of processors in the legacy flight avionics system
deployment described in Section 4. This system originally
required 14 processors to support all necessary software tasks.
Applying ScatterD with particle swarm optimization techniques
and genetic algorithms resulted in increased utilization of the
processors, reducing the number of processors needed to
deploy the software of the system to eight in both cases. The
remaining six processors could then be removed from the de-
ployment without affecting system performance, resulting in the
42.8% reduction shown in Figure 4.

The ScatterD tool was also applied to minimize the bandwidth
consumed due to communication by software tasks allocated to
different processors in the legacy avionics system described in
Section 4. Reducing the bandwidth requirements of the system
leads to more efficient, faster communication while also reduc-
ing power consumption. The legacy deployment consumed
1.83 · 1008 bytes of bandwidth. Both versions of the ScatterD
tool yielded a deployment that reduced bandwidth by
4.39 · 1007 bytes or 24%, as shown in Figure 4.

While these experiments prove the effectiveness of applying
ScatterD to legacy system deployments, it is important to note
that ScatterD can also yield benefits if applied when initially
designing a new system. If the potential processor utilization and
network interactions of the software tasks that comprise the
system are known, then ScatterD can be applied to potentially
yield a deployment with reduced processor requirements and
network bandwidth consumption.

Section 8:
Concluding Remarks

Optimizing deployment topologies on legacy embedded flight
avionics systems can yield substantial benefits, such as reducing
hardware costs and power consumption. The following are a
summary of the lessons we learned applying our ScatterD tool
for deployment optimization to a legacy flight avionics system:

• Multiple constraints make deployment planning hard.
Avionics deployments must adhere to a wide range of strict
constraints, such as resource, collocation, scheduling, and net-
work bandwidth. Deployment optimization tools must account
for all these constraints when determining a new deployment.

• A huge deployment space requires intelligent search tech-
niques. The vast majority of potential deployments that could
be created violate one or more design constraints. Intelligent

and automated techniques, such as hybrid-heuristic bin-
packing, should therefore be applied to discover valid “near-
optimal” deployments.

• Substantial processor and network bandwidth reductions
are possible. Applying hybrid-heuristic bin-packing to the flight
avionics system resulted in a 42.8% processor reduction and a
24% bandwidth reduction. Our future work is applying hybrid-
heuristic bin-packing to other embedded system deployment
domains, such as automobiles, multi-core processors, and
tactical smartphone applications.

• ScatterD can be applied throughout system lifetime.
Systems may initially include expansion resources for inevi-
table system maintenance and to support new software that
becomes available during the 20 to 30 year system lifetime.
These expansion resources can be used to support new soft-
ware that is added to the system overtime. Expansion resourc-
es, however, are finite and may not be necessary for a large
portion of the system lifecycle leading to increased system
weight and cost for an underutilized architecture. Therefore it is
critical that all system resources, such as processor utilization
and network bandwidth, are minimized so that superfluous
hardware is limited. ScatterD can determine system deploy-
ments, and minimize network bandwidth consumption and
processor utilization so that additional resources are present
to support new software as it becomes available later in the
system lifecycle.

The ScatterD tool is available in open-source from the As-
cent Design Studio <http://ascent-design-studio.googlecode.
com>. A document describing the flight avionics system case
study outlined in Section 4, as well as additional information
on ScatterD, can be found at the SPRUCE web portal
<http://www.spruceommunity.org>, which pairs open industry
challenge problems with cutting-edge methods and tools from
the research community.

Figure 4. Network Bandwidth and Processor Reduction in
Optimized Deployment

http://ascent-design-studio.googlecode.com
http://ascent-design-studio.googlecode.com
http://www.spruceommunity.org

36 CrossTalk—November/December 2011

1. This work was sponsored in part by the Air Force Research Laboratory under
 FA8750-08-C-0064 & FA8750-08-1-0025.

1. L. Sha and J. Goodenough. Real-time scheduling theory and Ada. Computer,
 23(4):53–62, 1990.
2. J. Strosnider and T. Marchok. Responsive, deterministic IEEE 802.5 token ring scheduling.
 Real-Time Systems, 1(2):133–158, 1989.
3. L. Lehoczky, J.P. snf Sha and J. Strosnider. Enhancing Aperiodic Responsiveness in a
 Hard Real-Time Environment. In Proc. of the IEEE Real-Time Systems Symposium,
 pages 416–423, 1987.
4. H. Beitollahi and G. Deconinck. Fault-Tolerant Partitioning Scheduling Algorithms in
 Real-Time Multiprocessor Systems. Pacific Rim International Symposium on Dependable
 Computing, IEEE, 0:296–304, 2006.
5. A.Carzaniga,A.Fuggetta,S.Richard,D.Heimbigner, A. van der Hoek, A. Wolf, and COLORADO
 STATE UNIV FORT COLLINS DEPT OF COMPUTER SCIENCE. A Characterization
 Framework for Software Deployment Technologies. Defense Technical Information
 Center, 1998.
6. J. Stankovic. Strategic Directions in Real-time and Embedded Systems. ACM Computing
 Surveys (CSUR), 28(4):751–763, 1996.
7. W.Damm,A.Votintseva,A.Metzner,B.Josko, T. Peikenkamp, and E. Bo ̈de. Boosting Re-use
 of Embedded Automotive Applications Through Rich Components. Proceedings of
 Foundations of Interface Technologies, 2005, 2005.
8. A.Burchard,J.Liebeherr,Y.Oh,andS.Son.New Strategies for Assigning Real-time Tasks to
 Multiprocessor Systems. IEEE Transactions on Computers, 44(12):1429–1442, 1995.
9. S. Lauzac, R. Melhem, and D. Mosse. Comparison of Global and Partitioning Schemes for
 Scheduling Rate Monotonic Tasks on a Multiprocessor. In 10th Euromicro Workshop on
 Real Time Systems, pages 188–195, 1998.
10. Fault-Tolerant Rate-Monotonic First-Fit Scheduling in Hard-Real-Time Systems. IEEE
 Transactions On Parallel and Distributed Systems, pages 934–945, 1999.
11. D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
12. C. Fonseca, P. Fleming, et al. Genetic algorithms for multiobjective optimization:
 Formulation, discussion and generalization. In Proceedings of the fifth international
 conference on genetic algorithms, pages 416–423. Citeseer, 1993.
13. R. Poli, J. Kennedy, and T. Blackwell. Particle swarm optimization. Swarm Intelligence,
 1(1):33–57, 2007.

Brian Dougherty is a Ph.D. candidate at Vanderbilt
University. Mr. Dougherty’s research investigates automat-
ed techniques for configuring DRE systems and automati-
cally scaling cloud computing applications to meet quality
of service guarantees. He received his M.Sc. in Computer
Science from Vanderbilt University in 2009.

Brian Dougherty
Institute for Software Integrated Systems
Vanderbilt University
2015 Terrace Place
Nashville, TN 37203
E-mail: briand@dre.vanderbilt.edu

Jules White is an Assistant Professor in the Bradley
Department of Electrical and Computer Engineering at
Virginia Tech. He received his BA in Computer Science
from Brown University, his MS and Ph.D. from Vanderbilt
University. His research focuses on applying search-based
optimization techniques to the configuration of distributed,
real-time and embedded systems. In conjunction with
Siemens AG, Lockheed Martin, IBM and others, he has
developed scalable constraint and heuristic techniques for
software deployment and configuration.

Dr. Douglas C. Schmidt is a Professor of Computer
Science at Vanderbilt University. His research spans pat-
terns, optimization techniques, and empirical analyses of
software frameworks that facilitate the development of
DRE middleware and applications. Dr. Schmidt has also
led the development of ACE and TAO, which are open-
source middleware frameworks that implement patterns
and product-line architectures for high-performance
DRE systems.

Russell Kegley is a Fellow at Lockheed Martin Aero-
nautics in Fort Worth, TX, where he works in the areas
of real-time schedulability, software performance mea-
surement and optimization, distributed algorithms, and
internally-focused consulting. Some of his most rewarding
experiences at Lockheed Martin are as a career mentor
and C/C++ coach for younger engineers. He holds an MS
in computer science from Mississippi State University.

Jonathan Preston is a Fellow at Lockheed Martin
Aeronautics in Fort Worth, TX, where he works as a
research lead and system/software architect. His interest
areas include analytic methods, automated design and
analysis techniques, and distributed real-time systems.
He currently serves as a design consultant for multiple
aircraft programs and is involved with several university
and cross-corporate collaborations.

ABOUT THE AUTHORS NOTES

REFERENCES

mailto:briand@dre.vanderbilt.edu

